Leptin resistance protects mice from hyperoxia-induced acute lung injury.
نویسندگان
چکیده
RATIONALE Human data suggest that the incidence of acute lung injury is reduced in patients with type II diabetes mellitus. However, the mechanisms by which diabetes confers protection from lung injury are unknown. OBJECTIVES To determine whether leptin resistance, which is seen in humans with diabetes, protects mice from hyperoxic lung injury. METHODS Wild-type (leptin responsive) and db/db (leptin resistant) mice were used in these studies. Mice were exposed to hyperoxia (100% O(2)) for 84 hours to induce lung injury and up to 168 hours for survival studies. Alveolar fluid clearance was measured in vivo. MEASUREMENTS AND MAIN RESULTS Lung leptin levels were increased both in wild-type and leptin receptor-defective db/db mice after hyperoxia. Hyperoxia-induced lung injury was decreased in db/db compared with wild-type mice. Hyperoxia increased lung permeability in wild-type mice but not in db/db mice. Compared with wild-type control animals, db/db mice were resistant to hyperoxia-induced mortality (lethal dose for 50% of mice, 152 vs. 108 h). Intratracheal instillation of leptin at a dose that was observed in the bronchoalveolar lavage fluid during hyperoxia caused lung injury in wild-type but not in db/db mice. Intratracheal pretreatment with a leptin receptor inhibitor attenuated leptin-induced lung edema. The hyperoxia-induced release of proinflammatory cytokines was attenuated in db/db mice. Despite resistance to lung injury, db/db mice had diminished alveolar fluid clearance and reduced Na,K-ATPase function compared with wild-type mice. CONCLUSIONS These results indicate that leptin can induce and that resistance to leptin attenuates hyperoxia-induced lung injury and hyperoxia-induced inflammatory cytokines in the lung.
منابع مشابه
Retracted: Time course changes of oxidative stress and inflammation in hyperoxia-induced acute lung injury in rats
متن کامل
Time course changes of oxidative stress and inflammation in hyperoxia-induced acute lung injury in rats
Objective(s):Therapies with high levels of oxygen are commonly used in the management of critical care. However, prolonged exposure to hyperoxia can cause acute lung injury. Although oxidative stress and inflammation are purported to play an important role in the pathogenesis of acute lung injury, the exact mechanisms are still less known in the hyperoxic acute lung injury (HALI). Materials ...
متن کاملAntiinflammatory properties of inducible nitric oxide synthase in acute hyperoxic lung injury.
The objective of this study was to determine whether endogenous nitric oxide (NO), specifically the inducible NO synthase isoform (iNOS: NOS II), reduces or amplifies lung injury in mice breathing at a high oxygen tension. Previous studies have shown that exogenous (inhaled) NO protects against hyperoxia-induced lung injury, and that endogenous NO derived from iNOS inhibits leukocyte recruitmen...
متن کاملOverexpression of Stat3C in pulmonary epithelium protects against hyperoxic lung injury.
Acute lung injury is a side effect of therapy with a high concentration of inspired oxygen in patients. The molecular mechanism underlining this effect is poorly understood. In this study, we report that overexpression of Stat3C, a constitutive active form of STAT3, in respiratory epithelial cells of a doxycycline-controlled double-transgenic mouse system protects lung from inflammation and inj...
متن کاملNLRP3 deletion protects from hyperoxia-induced acute lung injury.
Inspiration of a high concentration of oxygen, a therapy for acute lung injury (ALI), could unexpectedly lead to reactive oxygen species (ROS) production and hyperoxia-induced acute lung injury (HALI). Nucleotide-binding domain and leucine-rich repeat PYD-containing protein 3 (NLRP3) senses the ROS, triggering inflammasome activation and interleukin-1β (IL-1β) production and secretion. However,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of respiratory and critical care medicine
دوره 175 6 شماره
صفحات -
تاریخ انتشار 2007